GETTING STARTED

1 Deployment options 2
 1.1 Cloud DNS ... 2
 1.2 Cloud DNS (direct connection) 3
 1.3 Local DNS resolver ... 4
 1.4 Local DNS forwarder .. 5

2 Quickstart 7
 2.1 Creating the portal account 7
 2.2 DNS traffic view .. 8

3 Local resolver 9
 3.1 Local resolver system requirements 9
 3.2 Installation of a new local resolver 10
 3.2.1 Verifying the installation 11
 3.2.2 Securing your resolver 11

4 Resolver management 14
 4.1 Resolvers overview ... 14
 4.2 Deploy configuration .. 14
 4.3 Configure Policy per Network Segment 15
 4.4 Configure Blocking Pages 16
 4.5 Upgrade/Rollback Resolver 17

5 Security policies 19
 5.1 Malicious filtering thresholds 19
 5.2 Types of threats .. 20
 5.3 Allow lists ... 21
 5.4 Deny Lists .. 21
 5.5 Regulatory Restrictions .. 21
 5.6 Content Filtering .. 22

6 DNS resolution configuration 24

7 Knot Resolver - Tips & Tricks 26
 7.1 Allow particular IP ranges 26
 7.2 Refuse particular IP ranges 27
 7.3 Allow list of domains ... 27
 7.4 Deny list of domains .. 27
 7.5 Disable DNSSEC globally ... 28
 7.6 Disable DNSSEC validation for a domain 28
 7.7 Disable Query Case Randomization 28
18 Step by step installation

19 Operation
 19.1 Devices ... 59
 19.2 States ... 59
 19.3 Security ... 59
 19.4 Service requirements ... 60
 19.4.1 Windows ... 60
 19.4.2 Android ... 60
 19.5 Application Firewall Settings 61
 19.6 Application Logs .. 61

20 Deployment .. 62
 20.1 On-premise resolver deployment 62
 20.2 Cloud resolvers ... 62

21 Configuration .. 63
 21.1 Basic configuration .. 63
 21.2 Security policies .. 63
 21.3 Blocking page configuration 64
 21.4 Alerts ... 64

22 Analysis ... 66
 22.1 Domain analysis ... 66
 22.2 DNS traffic .. 66
 22.3 Threats ... 67
 22.4 Data Analysis .. 67
 22.5 API .. 68
 22.6 Domain resolution troubleshooting 68
 22.7 Domain Tracing ... 69

23 License Disclaimers ... 70
 23.1 the CRC64 variant with Jones coefficient 70
 23.2 the Lightning.NET Library 71

24 Changelog ... 72
 24.1 Steady ... 72
 24.1.1 2021.07.21 .. 72
 24.2 Latest ... 72
 24.2.1 2022.05.04 .. 72
 24.2.2 2021.12.14 .. 73
 24.2.3 2020.10.12 .. 73
 24.2.4 2021.08.10 .. 73
Whalebone is a service for security filtering of DNS traffic. It uses logic on top of own DNS resolvers. Such resolvers could be either cloud ones maintained directly by Whalebone, or on-premise software resolvers using cloud just for threat intelligence updates and reporting. For threat prevention Whalebone relies on external intelligence sources as well as on own methods. More information about the product and company is available on the official Whalebone website.
Whalebone could be deployed in several scenarios which can be even combined to satisfy requirements of particular networks. Combination of cloud and local DNS resolver with single management console will satisfy even complex and distributed networks.

Tip: All of the options below could be combined together. Various network segments and zones could have different requirements and possibilities.

Tip: Should you believe none of the scenarios below is applicable to your use case, please contact Whalebone Support and we will help you with architecture that will suit your needs.

1.1 Cloud DNS

This is the simplest method of deployment. To use Whalebone filtering, just change the configuration of your recent DNS resolvers and point them to Whalebone cloud resolvers. The downside of this deployment is that all of the incidents will be visible with source IP of the DNS forwarder instead of the original source IP. Still this deployment could come in handy if the priority is to prevent the threats with as low effort and infrastructure changes as possible.
1.2 Cloud DNS (direct connection)

This deployment is similar to forwarding the requests to Whalebone cloud resolvers, but the requests are sent directly to the cloud without local DNS cache. This could be usually set for all endpoints through DHCP. However, not using local DNS cache means increased latency introduced by the network communication between the client and cloud resolver. If the individual machines are not hidden behind a NAT, their IP addresses will be directly visible in the Whalebone reporting and the clients can be easily distinguished.
1.3 Local DNS resolver

This deployment scenario uses local Whalebone resolver, that communicates with Whalebone cloud through API. The DNS resolution takes place directly on the resolver and is completely independent on the cloud availability. Should the resolver not be able to reach the cloud service, it won't be able to update the threat intelligence and to reports any incidents. The main advantage of this deployment is visibility into local network and individual IP addresses and native DNS resolver latency.
1.4 Local DNS forwarder

Very similar deployment scenario as the local resolver, however Whalebone just forwards the requests to preconfigured resolvers. This scenario is very useful in case there are local DNS zones that has to be available for the clients (e.g. Active Directory) or cases when the recent resolver configuration is very specific and has to be preserved. This deployment has also lower hardware requirements, roughly half of the CPU and RAM recommended.

Warning: We don’t recommend to forward the requests to Whalebone cloud resolvers. Such configuration would result in duplicity incident detection, no added security and unnecessary latency for the clients.
1.4. Local DNS forwarder
2.1 Creating the portal account

After accessing the URL from your activation email, you will be asked to setup the password for your account. We don’t enforce any password complexity but we recommend using unique and non-trivial password. An unauthorized access would be a threat to users privacy and could misuse the configuration to harm your network.

After the password setup you will be asked to login using your username and newly created password.
2.2 DNS traffic view

Should the traffic be properly forwarded on Whalebone DNS resolvers (cloud or local) the DNS traffic will be visible under the menu option DNS traffic, where the individual requests and responses are available for further investigation. The traffic should be visible in several minutes after everything has been properly setup. If there is no traffic recorded even in several hours don’t hesitate to contact Whalebone support to help you doublecheck the configuration or any sort of network issues.

The DNS resolution check could be also done manually on Windows or Linux machines through `nslookup` tool. Set the Whalebone resolver IP and try to resolve an existing domain name.
Deploying the Whalebone solution deployed as a **local** resolver brings the advantage of visibility of local IP addresses that send the actual requests. If deploying locally is not a suitable option for you, check out the other Deployment Options.

Whalebone resolver is based on the implementation of Knot Resolver developed in the CZ.NIC labs.

3.1 Local resolver system requirements

Local resolver is supported on dedicated (hardware or virtual) machine running a supported operating system.

- **Supported operating system** (64-bit, server editions of following distributions):
 - Red Hat Enterprise Linux 7, 8
 - CentOS Linux 7, 8
 - CentOS Stream 8, 9
 - Debian 9, 10, 11
 - Ubuntu 16.04, 18.04, 20.04

- **Supported filesystems**
 - ext4
 - xfs only with d_type support (ftype=1)

- **Minimum hardware sizing** (physical or virtual):
 - 2 CPU cores
 - 4 GB RAM
 - 40 GB HDD (at least 30 GB in /var partition)

Warning: Please note that Whalebone only supports deployments without desktop environments such as GNOME, KDE or Xfce as those can impact available memory and DNS processing on the server.

- **Network setup requirements** (local resolver needs the following ports opened):
Warning:
Without communication on port 443 to the domains listed above the resolver won’t be installed at all (the installation script will abort).

The Blocking Pages are being hosted **directly** on the Resolvers so the IP addresses that are advertised to the clients must be used. The clients will then be redirected to the IP address of the resolver upon blocking. It is advised to allow only subnet(s) assigned to customers or trusted networks, otherwise it can be misused for various attacks or unauthorized users.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Protocol(s)</th>
<th>Port</th>
<th>Destination IP/Domain</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound</td>
<td>TCP+UDP</td>
<td>53</td>
<td>Any</td>
<td>DNS resolution</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>resolverapi.whalebone.io</td>
<td>Threat Database updates</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>stream.whalebone.io</td>
<td>Threat Database updates</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>logger.whalebone.io</td>
<td>Logging stream</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>agentapi.whalebone.io</td>
<td>Resolver management</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>transfer.whalebone.io</td>
<td>Support Log collection</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>portal.whalebone.io</td>
<td>Admin portal</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>harbor.whalebone.io</td>
<td>Resolver updates</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>download.docker.com</td>
<td>Installation Process</td>
</tr>
<tr>
<td>Outbound</td>
<td>TCP</td>
<td>443</td>
<td>data.iana.org</td>
<td>DNSSEC keys</td>
</tr>
</tbody>
</table>

Note: Should you need sizing estimation for large ISP or Enterprise network contact Whalebone. Whalebone local resolver will need approx. twice the RAM and CPU than usual resolver (BIND, Unbound).

3.2 Installation of a new local resolver

In menu **Resolvers** press the button **Create new**. Choose a name (identifier) for your new resolver. The input is purely arbitrary and won’t affect the functionality. Once you’ve entered the name, click **Add resolver** button After clicking the button an informative window will pop up with list of supported platforms and the one-line command for the installation. Copy the command and run on the machine dedicated for the local resolver. The command will run the installation script and will pass the one time token used for the resolver activation (the same command can not be used repeatedly).
Once the command is run the operating system is being checked and requirements installed. Script will inform you about the progress and it creates a detailed log named `wb_install.log` in current directory. Successful run of the installation script is ended with the notification `Final tuning of the OS` with value `[OK]`. Right after the installation also the initialization takes place and it could take several minutes before the resolver starts the services.

Warning: Local resolver is configured as an open resolver. It will respond to any request sent. This is quite comfortable in terms of availability of the services, but also could be a risk if the service is available from the outside networks. Please make sure you limit the access to the local resolver on port 53 (UDP and TCP) from the trusted networks only, otherwise it can be misused for various DoS attacks.

Important: The resolver’s processes need to communicate on localhost. In case some firewall is in place please make sure that the traffic is allowed, i.e. `iptables -A INPUT -s 127.0.0.1 -j ACCEPT`.

3.2.1 Verifying the installation

Whalebone resolvers come with a set of testing domains for the verification of the installation and the Security filtering. These domains can be used in order to ensure that you are effectively using a Whalebone resolver:

- http://malware.test.attacker.online
- http://c2server.test.attacker.online
- http://spam.test.attacker.online
- http://phishing.test.attacker.online
- http://coinminer.test.attacker.online

Upon visiting these domains a blocking page similar to the following should be presented:

In case you come across the page below, it means that the request was not blocked and thus a Whalebone resolver is not being used. Please review your settings and if the issue persists, please contact support.

3.2.2 Securing your resolver

Upon initial installation, the resolver is configured as an open resolver. It will respond to any request sent to it regardless of where the request originated from. This is quite comfortable in terms of availability of the services, but could also be a risk if the service is available from the outside networks. Please make sure you limit the access to the local resolver on port 53 (UDP and TCP) from the trusted networks only, otherwise it can be misused for various DoS attacks.
3.2. Installation of a new local resolver

Fig. 1: Blocking Page - Whalebone Resolver is being used
Fig. 2: Blocking Page - Whalebone Resolver is not being used
On the Resolvers page there is an overview of created resolvers. Administrator can adjust the configuration, deploy updates and install new resolvers.

4.1 Resolvers overview

In the main resolver overview there are tiles with resolver details and configuration options. The overview includes information about operating system and resources as CPU, Memory and HDD usage. There is also the status of the communication channel between the resolver and the cloud indicated by the color-coded dot.

The resolver can be in one of these states:

- **Active** - This is the expected status in production environments and signalizes that everything is running correctly.
- **Resolution problem** - The resolver is unable to translate DNS requests.
- **Unavailable** - The resolver has lost connection with Whalebone Cloud. This state does not affect the DNS translation however the resolver cannot get threat database updates and might not respond to policy or configuration changes initiated from the portal.
- **Upgrading** - An upgrade command has been issued to the resolver. This state should not persist for more than a few minutes.
- **Not installed** - The resolver was not yet installed.

4.2 Deploy configuration

Should you change any configuration related to the DNS resolution, you have to deploy the configuration afterwards. Otherwise the changes will not take effect. If there are any configuration changes available to be deployed, there will be a red icon with down right arrow visible on the resolver card. Once clicked, the webpage will ask for confirmation and the successful deployment will be notified in the top right corner.

Note: If the result is an deployment error, try to repeat the action. The reason for the error could be a short term communication outage between the cloud and the resolver.
4.3 Configure Policy per Network Segment

Security and content policies can be assigned in a granular manner to different segments of the network. The setting applies per resolver and can be configured under **Resolvers > <Name of the resolver> > Policy Assignment**

Note: The configuration is per resolver. In case you want to apply the configuration to more than one resolvers, please modify all the necessary resolvers.

The policies can be applied by adding IP ranges in the available input form:

![IP Range and Policy Selection](image)

In order to provide a better understanding let’s consider an example with the network range 10.10.0.0/16. We have created 3 different policies:

- **Default**: the policy that we want to apply to the whole network, this is the most generic policy
- **Exception**: a policy that must be applied to a specific segment in the network which will have all security and content filtering disabled.
- **School**: a policy that we want to apply to 2 different subnets that have been assigned to school environments. In this case we have chosen to be more strict in the blocking.

![Security Policies](image)

Note: The first policy that is defined acts as a default policy and is applied in cases where a more granular policy for a network range is not available. This policy is always on the top of the list, is marked with a special icon and cannot be deleted.

Let’s summarize the requirements in the following matrix:
<table>
<thead>
<tr>
<th>Policy</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>10.10.0.0/16</td>
</tr>
<tr>
<td>Exception</td>
<td>10.10.10.0/24</td>
</tr>
<tr>
<td>School</td>
<td>10.10.20.0/24 and 10.10.40.0/24</td>
</tr>
</tbody>
</table>

In the following capture the process of assigning the policies is described:

Note: After adding the networks, and in order to take effect, you must click on *Save to resolver*. The changes will be then validated and a pop-up message will provide additional information.

In order to assign additional entries to an existing assignment, a new network range can be appended using *newline* as a separator. Building on the previous example, in case we wanted to add the subnet 10.10.30.0/24 to the Exception Policy:

4.4 Configure Blocking Pages

In a similar manner to the Security Policies, the Blocking Pages can also be assigned to particular network ranges. The first step is to select *On-premise local resolver* for the *Blocking Page Location* option. Two new fields are enabled where the IPv4 and IPv6 addresses of the Blocking Pages must be filled in.

Tip: The Blocking Pages are being hosted directly on the Resolvers so the IP addresses that are advertised to the clients must be used. The clients will then be redirected to the IP address of the resolver upon blocking. Please ensure that ports 80 and 443 are accessible on the firewall.

For each IP range that is added, there is a drop-down menu for the Blocking Page that should be assigned.

![Fig. 1: Assign Blocking Page to IP range](image-url)
Important: The first entry in the Policy Assignment is considered the Default/Fallback. In case a client accesses the resolver from an undefined IP range, the respective options will apply.

Note: After making the necessary changes to the Blocking Page settings, please check whether the resolvers need to be re-deployed.

4.5 Upgrade/Rollback Resolver

When a new version of the Resolver is released, a red Upgrade icon appears on the resolvers’ management interface.

Upon clicking on the Upgrade icon, the respective menu is selected and important information about the new release is provided.

From this menu, the upgrade of the resolver can be initiated.

In case the installation of the new version does not yield the expected outcome, a Rollback to the previous version is possible anytime in the Rollback tab:
4.5. Upgrade/Rollback Resolver
You can watch step-by-step video guide of basic security policy configuration here. | The step-by-step video guide with deeper explanation of security policy tuning here. | To control Whalebone's security filtering you need to configure it's security policies. When you install Whalebone, it comes with a Default policy which is set to include all threat types and sets the tresholds to the value of 80/50. This policy will also be automatically applied to every newly installed resolver. In any policy there are several options to be configured:

5.1 Malicious filtering tresholds

Every domain in our threat intelligence database has certain value of the score. The score represents how malicious we believe that particular domain to be. In the policy you adjust two values related to the score:

- **The blocking threshold** - Domains with a score higher or equal to this value will be blocked by Whalebone and the client request will be answered with and IP address of the blocking page.

- **The audit treshold** - Domains with a score higher or equal to this value, but lower than the blocking treshold will be monitored. The request will be allowed and the answer will be served either from cache or by performing the full DNS recursion. Requests will however be monitored in the Threats dashboard for later investigation, if needed.

Individual actions could be turned off - e.g. turn off the blocking for testing purposes The slider values define the probability that the particular domain is malicious on the scale from 0 to 100 (0 is a safe domain, 100 is malicious)

Tip: The default threshold for blocking is set to 80 which is safe even for larger network with liberal policy towards the users. For more restrictive policy we suggest setting threshold for blocking to 70-75, in very restrictive networks even down to 60. Audit is purely informative, however setting the threshold too low can result in too many logged incidents.

There are preconfigured policies available that cover the most usual cases. These cases are: *Don’t Block*, *Block carefully* and *Block strictly*. *Block carefully* This setting prioritizes a low false positive rate and is suitable for ISPs. *Block strictly* maximizes the detection rate and is suitable for most corporate deployments. *Don’t block* turns off the blocking entirely and causes Whalebone to operate in a transparent/permissive mode, where it will only log the incidents but it won’t actively block them.
You can configure additional policies by clicking the “+ Add policy” tab. First you select which of the existing policies you want the new policy to be based upon. Then click the pencil button under the Name of the Policy to clearly differentiate it from the others. You can then modify the blocking and auditing sensitivity, add deny lists or set up regulatory filtering. The new policy is not saved until you click the “Save” button. .. tip:: The policy is not active unless it is assigned to some resolvers (local or cloud ones). To start enforcing the policy, navigate to Resolvers > Policy Assignment and assign it to a specific subnet or resolver.

5.2 Types of threats

- The default behavior is to include all types of threats
- The drop-down menu allows the user to choose a more granular category of the threats they would like to audit or block. The available categories are: blacklist, c&c, coinminer, compromised, malware, phishing and spam.

A full list of what each category includes can be found below:

- **C&C (Command and Control)**: domains that facilitate botnet communication to coordinate its activity. A botnet is a network of infected computers, which are controlled as a group.
- **Malware**: domains that host and distribute any kind of malicious code
- **Phishing**: domains aiming to trick users and extract sensitive information such as credit card details, login credentials, etc.
- **Blacklist**: domains that are known to serve multiple nefarious purposes at the same time or over a period of time.
- **Spam**: domains that are linked to spreading spam emails and scam schemes.
- **Compromised**: otherwise legitimate domains that have been hacked and are temporarily used for malicious purposes
- **Coinminer**: domains that hijack processing and energy resources for unsolicited cryptocurrency mining

Note: Any changes in the Security Policies will be applied to the resolvers in approx. 2-3 minutes. Saved configuration is used during preparation of the threat data package for the resolvers that download and apply those packages at regular
5.3 Allow lists

- Domains that won’t be blocked at any time unless they are also listed on a Deny List
- The allow list is applied to the domain and all of the subdomains. e.g.: allowed domain whalebone.io will also allow docs.whalebone.io, but not vice versa
- The list can be configured on the Allow / Deny List tab

5.4 Deny Lists

- Domains that will be blocked at all times
- The deny list is applied to the domain and all of the subdomains. e.g.: denied domain malware.ninja will also deny super.malware.ninja, but not vice versa
- The list can be configured on the Allow / Deny List tab.

The custom lists support a *Lex specialis derogat legi generali* principle, in which a more specific domain listing overrides a more general domain listing. This way, you can have the whole domain malware.ninja on a Deny list but if you have friendly.malware.ninja on an Allow list, this will take precedence and communication to this site will act as an exception and will be allowed by the resolver.

Warning: After creating an allow or deny list, it needs to be assigned to the specific security policy, or else the changes will not take effect.

5.5 Regulatory Restrictions

- Integrated list of domains that must be applied in order to conform to Regulatory Restrictions of a country.
- Examples of these domains include cases of illegal gambling or child pornography.

Warning: Each country has different Regulatory lists. In case of multi-country deployments different policies can be used in order to apply the proper Regulatory Restrictions.
5.6 Content Filtering

Particular Content categories can be applied on a per-policy level. This is useful in case different segments of the networks come with different requirements. For example, in case of a School environment all the Adult categories can be enabled and access to relevant content can be restricted.

A diverse set of content filtering categories are available:

- **Sexual content**: sexual and pornographic material
- **Gambling**: games and activities involving betting money
- **Weapons**: guns and weapon-related sites
- **Audio-video**: audio and video streaming services
- **Games**: online games and gaming websites
- **Chat**: instant messaging and chatting applications
- **Social-networks**: social networking sites and applications
- **Child abuse**: websites related to child abuse dissemination of child pornography
- **Drugs**: drug related websites including alcohol and tobacco
- **Racism**: content linked to racism and xenophobia
- **Violence**: explicit violence and gore
- **Terrorism**: domains linked to terrorism support
- **Advertisement**: banners, context advertisements and other advertisements systems
- **Crypto-mining**: domains connected to crypto-currency mining activities
- **DoH**: DNS over HTTPS. These are domains that provide obfuscation of the DNS requests in HTTP traffic
- **P2P**: domains linked to peer to peer networks where multimedia content is shared by the users
- **Tracking**: web and email tracking systems

The content filter can also be applied for specific times of the day. When a particular category is ticked, a clock icon will appear next to it. If you click the clock icon, you can add a new schedule for this category. Multiple schedules may be active for the same category. This way, you may only allow access to social networks during the lunch break and after working hours. Finish the settings by clicking “Apply” and “Save” the security policy.

Allow category 'social networks' in the following times

- [] 12:00 – 12:59
- [] 17:00 – 23:59

Allow category 'social networks' in the following times

Time options

- [] 12:00
- [] 12:59
- [] 17:00
- [] 23:59

Days

- [] Everyday
- [] Monday
- [] Tuesday
- [] Wednesday
- [] Thursday
- [] Friday
- [] Saturday
- [] Sunday

Add schedule

- [] Add schedule
- [] Apply
Note: By applying the schedule, you are allowing access to domains from that content category during that specific time period.
DNS RESOLUTION CONFIGURATION

You can find the options to configure the resolver in the menu Configuration and tab DNS resolution. This page allows you to do the basic configuration without the knowledge of configuration syntax. Furthermore there is a text area allowing you to define any configuration to the underlying Knot Resolver.

Available configuration options:

- **Enable IPv6**
 - Should the system have the IPv6 properly configured and working, it is possible to enable it. Otherwise the activation of IPv6 could have negative effects on the performance and latency of the resolver.

- **Forward queries to**
 - This option allows to redirect all or chosen queries to upstream resolvers or authoritative DNS servers (suitable e.g. for forwarding to domain controllers of Active Directory)
 - **Disable DNSSEC**
 - If checked, the answers from the forwarded queries won’t be DNSSEC validated. We recommend to check this option should the upstream server have not DNSSEC configured properly.

- **All queries to**
 - Option to forward all queries to one or more resolver.
 - This option keeps caching all responses!

- **Following domains**
 - Option to choose particular domains that should be forwarded to on more resolvers
 - Different resolvers could be defined for different domains
 - Caching for the selected domains will be turned off!

- **Static records**
 - Predefined answers that should be returned for particular domains
 - Could serve for special purposes such as monitoring or very simple substitution of records on authoritative server

- **Advanced DNS configuration**
 - Text area for complete Knot Resolver configuration
 - Supports Lua scripting

Warning: Faulty configuration can impact stability, performance or security functions of the resolver
Note: Once the **Save** button is pressed changes in DNS resolution are saved and prepared to be deployed to target resolvers. The deployment itself has to be done from the **Resolvers** page. It is possible to do multiple changes and apply all of them at once to minimize the number of deployments to the resolver.
CHAPTER SEVEN

KNOT RESOLVER - TIPS & TRICKS

Advanced configuration of Whalebone resolver allows to apply any Knot Resolver configuration. In this section we are going to describe the most frequent use cases and examples of such configuration snippets. Views, policies and their actions are evaluated in the sequence as they are defined (except special chain actions that are described in the official Knot Resolver documentation). First match will execute the action, the rest of the policy rules is not evaluated. If you are going to combine different configuration snippets, you can load the same module just once at the beginning of the configuration.

7.1 Allow particular IP ranges

Define a list of IP ranges that will be allowed to use this DNS resolver. Queries from all other ranges will be refused.

```plaintext
-- load modules
modules = {'policy', 'view'}

--define list of ranges to allow
-- 127.0.0.1 should always be allowed
allowed = {
    '127.0.0.1/32',
    '10.10.20.5/32',
    '10.30.10.0/24'
}

-- allow list of ranges
for i, subnet in ipairs(allowed) do
    view:addr(subnet, policy.all(policy.PASS))
end

-- block all other ranges
view:addr('0.0.0.0/0', policy.all(policy.DENY))
```
7.2 Refuse particular IP ranges

Define a list of IP ranges that will be blocked to use this DNS resolver. Queries from all other ranges will be allowed.

```lua
-- load modules
modules = {'policy', 'view'}

-- define list of ranges to block
blocked = {
  '10.10.20.5/32',
  '10.30.10.0/24'
}

-- block list of ranges
for i,subnet in ipairs(blocked) do
  view:addr(subnet, policy.all(policy.REFUSE))
end

7.3 Allow list of domains

```lua
-- load modules
modules = {'policy'}

-- define list of allowed domains
domains = {
 'example.com',
 'anotherexample.org'
}

-- allow list of domains for i,domain in ipairs(domains) do
 policy.add(policy.suffix(policy.PASS, {todname(domain)}))
end
```

7.4 Deny list of domains

```lua
-- load modules
modules = {'policy'}

-- define list of denied domains
domains = {
 'example.com',
 'anotherexample.org'
}

-- deny list of domains, while returning NXDOMAIN
for i,domain in ipairs(domains) do
 policy.add(policy.suffix(policy.DENY, {todname(domain)}))
end
```
7.5 Disable DNSSEC globally

```plaintext
trust_anchors.negative = { '.' }
```

7.6 Disable DNSSEC validation for a domain

```plaintext
trust_anchors.set_insecure({'domain.com'})
```

7.7 Disable Query Case Randomization

```plaintext	policy.add(policy.suffix(policy.FLAGS('NO_0X20'), {todname('domain.com')}))
```

7.8 Disable QNAME Minimization

```plaintext	policy.add(policy.suffix(policy.FLAGS('NO_MINIMIZE'), {todname('domain.com')}))
```

7.9 Disable Domain caching

```plaintext	policy.add(policy.suffix(policy.FLAGS('NO_CACHE'), {todname('domain.com')}))
```

7.10 Enable Prometheus Metrics

The resolver can expose its metrics in Prometheus text format. The following script enables the HTTP module and the respective /metrics endpoint is made available.

More information and configuration options can be found on Knot Resolver Documentation

```plaintext
modules.load('http')
function startHttp ()
et.listen('127.0.0.1', 8453, { kind = 'webmgmt' })
end
pcall(startHttp)
```
You can watch step-by-step video guide here. In case of blocking access to a domain (due to security, content or regulatory reasons), the resolvers are answering to the clients with a specific IP address that leads to one of the Blocking pages. Should the clients initiate the HTTP(S) connections towards the blocked domain, they are presented with a custom Blocking page with different content based on the reason of the blocking. Whalebone provides sample template pages for the Blocking Pages, however, they do not have to be followed and virtually every modification, branding and copywriting is possible. The template code is written to be compatible with the widest range of browsers to avoid problems with older versions.

Different versions of the Blocking Pages can be assigned to different segments of the networks.

Fig. 1: Blocking Pages Overview

For each version, based on the deployment details, there are four variants of the Blocking Pages that are available and can be configured:

- **Security**: displayed when access is blocked due to security reasons
- **Blacklist**: displayed when access is blocked by the Administrators
- **Regulatory**: displayed when access is regulated due to law or court order
- **Content**: displayed when access is blocked due to the content of the domain

Furthermore, each version can have different localization options. The language that is going to be presented to the user is inferred from the language of the browser that is visiting the Blocking Page. New locales can be seamlessly added as an option.

For each Locale several options are available. In the example above, the English version has the following options:

1) **Use Template**
When using the template option, the information that is provided as input to the following form are injected in the template code. This is the fastest and easiest way to customize the blocking pages.

2) Set as default locale

This option can customize the default language of the Blocking Pages. In case some browser does not declare its preferred language, the “Default” language acts as a fallback mechanism.

3) Delete the locale

In case the locale is no longer needed, it can be deleted.

Each of the Versions of the Blocking Page (Security, Blacklist, Regulatory, Content) can be customized in more detail by modifying the HTML code. Upon clicking on each version an editor is presented that allows for any required changes. The editor also exposes a “Verification” interface which parses the final HTML code and checks for the enabled functionalities. The check is based on the id of the specific elements. More information and requirements for each functionality can be found by clicking the respective labels.

**Note:** Each Version of the Blocking Page has unique characteristics that can be selected. For example, the Security Blocking Page can include a “Bypass” button which is not available in the respective Regulatory and Blacklist versions.

After editing and saving the changes to the Blocking Pages it is important that they are applied to the individual resolvers. More information can be found at the Configure Blocking Pages Section.

**Tip:** The Blocking Pages are served from a web server directly on the Resolver. The pages are expected to be a single file so any additional resources (CSS, images, scripts) must be either embedded directly in the HTML code or served...
from a publicly accessible web server. The resolver does not provide any option to serve other content.
CHAPTER NINE

RESOLVER AGENT

9.1 Command line interface

Agent’s actions can be invoked using a proxy bash script present at path /var/whalebone/cli/cli.sh. This script calls a python script which handles the execution of the following agent actions:

- **sysinfo** - returns the system status data in JSON format.
  - Parameters: None
  - Output: tested categories on tested key can have two values ‘ok’ and ‘fail

```json
{
 "hostname": "hostname",
 "system": "Linux",
 "platform": "CentOS Linux 7 (Core)",
 "cpu": {
 "count": 4,
 "usage": 28.6
 },
 "memory": {
 "total": 7.6,
 "available": 3.9,
 "usage": 49.2
 },
 "hdd": {
 "total": 50.0,
 "free": 14.4,
 "usage": 71.1
 },
 "swap": {
 "total": 0.0,
 "free": 0.0,
 "usage": 0
 },
 "resolver": {
 "answer.nxdomain": 3284,
 "answer.tc": 35,
 "answer.ad": 849,
 "answer.100ms": 3983,
 "answer.cd": 6,
 "answer.1500ms": 74,
 }
}
```
"answer.slow":215,
"answer.rd":224337,
"answer.lms":104683,
"answer.servfail":215,
"predict.epoch":24,
"query.dnssec":6,
"answer.250ms":14941,
"query.edns":35498,
"answer.cached":86713,
"answer.nodata":3622,
"answer.aa":2362,
"answer.do":6,
"answer.edns0":35498,
"answer.ra":22437,
"predict.queue":0,
"answer.total":224337,
"answer.10ms":35351,
"answer.noerror":217216,
"answer.50ms":59766,
"answer.500ms":4642,
"answer.1000ms":653,
"predict.learned":80
},
"docker":{
  "Platform":{
    "Name":"
  },
  "Components":[
    {
      "Name":"Engine",
      "Version":"17.12.1-ce",
      "Details":{
        "ApiVersion":"1.35",
        "Arch":"amd64",
        "BuildTime":"2022-02-27T22:17:54.000000000+00:00",
        "Experimental":"false",
        "GitCommit":"88888fc6",
        "GoVersion":"go1.999.999",
        "KernelVersion":"3.22.66-693.21.1.el7.x86_64",
        "MinAPIVersion":"1.99",
        "Os":"linux"
      }
    },
    "Version":"19.32.1-ce",
    "ApiVersion":"1.98",
    "MinAPIVersion":"1.12",
    "GitCommit":"7390fc6",
    "GoVersion":"go1.9.4",
    "Os":"linux",
    "Arch":"amd64",
    "KernelVersion":"3.10.0-693.21.1.el7.x86_64",
  ]
}

(continues on next page)
"BuildTime":"2018-02-27T22:17:54.000000000+00:00"
},
"check":{
    "resolve":"ok",
    "port":"ok"
},
"containers":{
    "lr-agent":"running",
    "passivedns":"running",
    "resolver":"running",
    "kresman":"running",
    "pcpy":"running",
    "logrotate":"running",
    "logstream":"running"
},
"images":{
    "lr-agent":"whalebone/agent:1.1.1",
    "passivedns":"whalebone/passivedns:1.1.1",
    "resolver":"whalebone/kres:1.1.1",
    "kresman":"whalebone/kresman:1.1.1",
    "logrotate":"whalebone/logrotate:1.1.1",
    "logstream":"whalebone/logstream:1.1.1"
},
"error_messages":{
},
"interfaces":[
    {
        "name":"lo",
        "addresses":[
            "127.0.0.1",
            "::1",
            "00:00:00:00:00:00"
        ]
    },
    {
        "name":"eth0",
        "addresses":[
            "192.168.0.1",
            "::1",
            "00:00:00:00:00:00"
        ]
    },
    {
        "name":"docker0",
        "addresses":[
            "10.0.0.1",
            "00:00:00:00:00:00"
        ]
    }
]
• **stop** - stops up to three containers
  – Parameters: containers to stop (up to 3), Example: ./cli.sh stop resolver lr-agent kresman
  – Output:

```json
{
 'resolver': {'status': 'success'},
 'lr-agent': {'status': 'success'},
 'kresman': {'status': 'success'}
}
```

• **remove** - removes up to three containers
  – Parameters: containers to remove (up to 3), Example: ./cli.sh remove resolver lr-agent kresman
  – Output:

```json
{
 'resolver': {'status': 'success'},
 'lr-agent': {'status': 'success'},
 'kresman': {'status': 'success'}
}
```

• **upgrade** - upgrades up to three containers, the container’s configuration is specified by a docker-compose in agent container
  – Parameters: containers to upgrade (up to 3), Example: ./cli.sh upgrade resolver lr-agent kresman
  – Output:

```json
{
 'resolver': {'status': 'success'},
 'lr-agent': {'status': 'success'},
 'kresman': {'status': 'success'}
}
```

• **create** - creates containers, the containers are specified by a docker-compose in agent container (can also be found in /etc/whalebone/agent)
  – Parameters: None, Example: ./cli.sh create
  – Output:

```json

Pending configuration request deleted.
```

• **updatecache** - forces the update of resolver’s IoC cache (which is used for blocking), this action should be done to manually
  – Parameters: None
  – Output:

```json
{'status': 'success', 'message': 'Cache update successful'}
```

• **containers** - lists the containers and their information which include: labels, image, name and status.
- Parameters: None

- Output:

```json
[

{
 "id": "b8f4489379",
 "image": {
 "id": "c893b4df5ca3",
 "tags": [
 "whalebone/agent:1.1.1"
]
 },
 "labels": {
 "lr-agent": "1.1.1"
 },
 "name": "lr-agent",
 "status": "running"
},
{
 "id": "e433d58f13",
 "image": {
 "id": "2c4b84a7daee",
 "tags": [
 "whalebone/passivedns:1.1.1"
]
 },
 "labels": {
 "passivedns": "1.1.1"
 },
 "name": "passivedns",
 "status": "running"
},
{
 "id": "2aeec00121",
 "image": {
 "id": "fc442e625539",
 "tags": [
 "whalebone/kres:1.1.1"
]
 },
 "labels": {
 "resolver": "1.1.1"
 },
 "name": "resolver",
 "status": "running"
},
{
 "id": "662dac2e6c",
 "image": {
 "id": "b37d0d1bd10b",
 "tags": [
 "whalebone/kresman:1.1.1"
]
 }
]
```
Each of those actions execute similarly named actions and the status of that action, or output of that action, is printed. The **list** and **run** actions are intended for the scenario when a confirmation of a certain action is required. The action list shows the action that should be executed and the changes that would be done by that action for containers specified in that action. This serves as an example of what would happen if the awaiting action would have been executed. The run action then executes the awaiting action and cleans up afterwards.

The actions of upgrade and create use the docker-compose template present in the agent container to create/upgrade the desired container. This template is mounted in the volume `/etc/whalebone/agent` if the user decides to change it. However this change needs to be done also to the template present at `portal.whalebone.io`, if not than the local changes will be overwritten from the cloud during next upgrade.

The bash script should be invoked like this: `./cli.sh action param1 param2 param3`. Action is the action name and parameters are the action parameters. Only actions for container stop, remove and upgrade use these and specify what containers should be affected by the respective action.
9.2 Strict mode

The agent’s default option is to execute actions from the cloud management immediately. It is however possible to enable manual confirmation of requests. This gives the administrator control over when and what gets executed. To enable the resolver Strict mode, please create a ticket to Whalebone support.

To list changes the request introduces the cli option list option should be used. To execute the request use cli option run. There can only be one request pending in the queue. New request from the cloud will overwrite the previous one, but the new one holds the full desired state anyway. To delete waiting request use cli option delete_request. The actions that can be persisted are: upgrade, create and suicide. Please see examples of the CLI command usage.

- list - lists the awaiting command and the changes that would be made to the containers specified in the awaiting action, this
  - Parameters: None, Example: ./cli.sh list
  - Output:

```

Changes for resolver
New value for label: resolver-1.1.1
 Old value for label: resolver-1.0.0

```

- run - executes the awaiting command
  - Parameters: none, Example: ./cli.sh run

```
{ 'resolver': { 'status': 'success' } }
```

- delete_request - deletes the awaiting request
  - Parameters: none, Example: ./cli.sh delete_request

Pending configuration request deleted.
CLOUD DNS RESOLVERS

You can watch step-by-step video guide here

Whalebone Cloud DNS resolver is a service aimed mainly for small or medium customers who can use cloud resolvers for a backup. Typically it is aimed at ISPs that have only one on-premise resolver and to ensure high availability, they use cloud DNS resolvers as a secondary recursive for their customers. One of the prerequisites is to define a public IP address or ranges to Cloud DNS resolver policy assignment so cloud resolver can differentiate and deliver the right filtering policy which you have setup for your network.

Public network range definition serves to distinguish individual customers and their users. It is necessary to include all the public network ranges that will be used by DNS resolver as well as the users browsing the internet. The definition is used to customize the block page appearance (described later). Single customer can manage more network ranges, such ranges can be assigned to localities to easily distinguish between logical network zones in DNS traffic audit and incidents.

**Warning:** If you do not fill in your public network ranges, cloud resolvers will serve as a simple DNS resolvers **without any filtering.** If you use local resolvers, you still have to input your network ranges to display fully customized blocking page (sinkhole) to the blocked users.

- Into the field **IP Range** insert one or more network ranges using notation `<network address>/<mask>`, e.g.: 198.51.100.0/24
- Press button **Add IP range** to add more segments of the network.
- Don’t forget to save your new setup through the **Save to resolver** button

**Tip:** While testing Whalebone (e.g. through adding a testing domain into blacklist) don’t forget that many DNS records could be recently in the DNS cache anywhere between the resolver and the user (including the browser, operating system or forwarders). Testing right after the configuration change could therefore fail and the timespan before the protection
becomes active could vary based on the TTL of the particular DNS record (should all the caches along the way actually honor the TTL value).

You should forward your DNS traffic towards Whalebone cloud resolvers if this is your preferred deployment option. Cloud resolvers are available on an Anycasted IP address: 193.32.92.32

The IP addresses of the resolvers are accessible under Cloud resolvers and under the menu Help > DNS resolvers
In order to uninstall a resolver and remove all Whalebone configuration files the following steps should be followed:

**Warning:** Before starting the process it should be noted that all the individual components that support the resolver functionality are being executed as docker containers. Steps 1 and 2 apply only in case the host server is dedicated and **no other services** are running as containers. Should the situation be different, please contact us and we will provide an up to date list of the containers that should be removed.

1. **Stop and remove all the running docker containers:**
   
   `docker rm -f lr-agent && docker rm -f $(docker ps -q)`

2. **Uninstall Docker:**
   
   Please follow the instructions for the applicable operating system:
   
   - CentOS
   - Red Hat
   - Debian
   - Ubuntu

3. **Remove all resolver configuration files and related data:**
   
   ```
 rm -rf /etc/whalebone
 rm -rf /var/whalebone
 rm -rf /var/lib/kres
   ```

4. **Remove DNS traffic and incidents logs:**
   
   If you want to fully uninstall the resolver including the logs from DNS traffic and incidents, delete also the log folder. If your intention is just to re-install the resolver but keep the logs, you can skip this step.
Whalebone Portal (graphical user interface) gives the user number of possibilities how to analyze what is happening on the DNS resolvers and the network.

12.1 Threats

Threats are special events where there is a DNS request for a domain that is present within the reputation database. There are two types of actions when a threat is detected. The first is to audit the event while the second is to block it.

The action that is to be implemented depends on the policies that are assigned to the specific resolver. For more on that please refer to Security Policies.

There are some pre-configured filters that can be applied on the data on the portal. Some sample queries can be found below. These queries depict the majority of the use cases but there is no hard limit as the available search engine is full-text and any query can be compiled impromptu.

You can watch step-by-step video guide here.

12.1.1 How to search for audit/block events.

There are two options in order to filter the different types of events.

In the first option a visual filter can be applied where the type that a user clicks is disabled from the graph. This can aid the process of having a basic overview of the traffic’s qualities.

For more advanced usage a query can be issued:

- action: block in order to filter the blocked events
- action: audit in order to filter the audited events
- action: allow in order to view the Block page bypasses

This query updates the content of the whole dashboard.
12.1.2 How to search for a domain

In order to search for a domain’s instances in the events, the easiest way is to click on it in the provided log history. Alternatively a query could be issued in the search engine with the term: `domain:<domain>`

12.1.3 How to search for events based on specific IP address.

A filtering of an IP address is possible by clicking on the specific Source IP bar and in this way filtering the content of the whole portal.

A more advanced use case could be to directly search for IP address in the search field and use the operator `client_ip` such as: `client_ip:<IP address>`.

**Tip:** In the following example the data are anonymized so a reader could consider that instead of the previewed hash value, an IP address is used.

12.1.4 How to search for events based on specific threat category.

There are multiple threat categories available.

To name a few: malware, c&c, blacklist, phishing, coinminer, spam, and compromised.

A simple alternative could be to click on the bar that matches the detected threat and filter only the specific type.

Another approach could be to click on the filter icon and in this way specify the desired category, as can be seen in the next image.

12.1.5 How to change the date range of the available data

The date range of the data that can be previewed in the portal can change in multiple ways. The following image shows three of the available ways. These can be summarized as simply by clicking on the current date that automatically transcribes to the current time, by inserting the date in text in the `YYYY.MM.DD HH:mm:ss` format or by using the built-in tool that provides quick suggestions.

12.1.6 How to analyze a domain

In case to know further information about domain, especially what score Whalebone assigns to particular domain, when was first seen and categorized as malicious, if it falls under regulatory category or what external sources know about it, then watch step-by-step video here.
12.2 DNS Traffic

The DNS Traffic tab contains an overview of the traffic that has been logged on the resolver. It contains all the queries along with some additional information such as the type, the answer and the TTL (time to live) of the answer.

**Tip:** The data are subject to de-duplication. This means that the resolver logs only unique combinations of query, query type and answer per 24 hour time frame. For this reason, a query might not be available on the portal even though it has been resolved.

You can watch step-by-step video guide [here](#).

Below are some of the most useful filtering options of the available data will be described.

### 12.2.1 How to view all queries of a specific type

In order to view all queries of a specific type the most straightforward way is to click on the filter icon and select the desired value.

Another option is to insert a query in the search field. This query could be in the form `query_type:<type>`. The possible types are: A, AAAA, CNAME, MX, NS, PTR, RRSIG, SPF, SRV and TXT.

### 12.2.2 How to view all answers of a specific type

The answers can be filtered by selecting the specific bar in the respective Answers field. Additionally, the answers can be viewed by issuing a query in the form `answer:<answer_type>`. Useful answer types are NXDOMAIN or SERVFAIL.

### 12.2.3 How to search for a domain

In order to search for a domain’s instances in the logs, the easiest way is to click on it in the provided log history. Alternatively a query could be issued in the search engine with a fully qualified domain: `query:<domain>`. Please note the . at the end of the query.

A more fine-grained search can be performed by searching for more specific domain based on the available domain levels. The acceptable search fields are `domain_l1:<domain_l1>` and `domain_l2:<domain_l2>`.

### 12.2.4 How to change the date range of the available data

Please refer to How to change the date range of the available data of the Threats section.
12.2.5 How to view DGA (Domain Generation Algorithm) indications

Whalebone provides a view of indicators of DGA instances. These indications can be accessed by using the filter icon and selecting DGA as can be seen below. Alternatively the query dga.class:1 can be issued.

12.2.6 Other Tips and Tricks

Search operators (wildcard (*), logical AND, logical OR) can also be used to improve the search result precision. It should be noted that some requested fields in DNS traffic and Threats are slightly different.

Example queries are:

- All queries from IP addresses that start with 10:

<table>
<thead>
<tr>
<th>DNS Traffic</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>client: 10.*</td>
<td>client_ip: 10.*</td>
</tr>
</tbody>
</table>

- All queries for domain whalebone.io:

<table>
<thead>
<tr>
<th>DNS Traffic</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>query: whalebone.io. (please also include the dot at the end)</td>
<td>domain: whalebone.io</td>
</tr>
</tbody>
</table>

- Queries from IP address 1.2.3.4 for whalebone.io:

<table>
<thead>
<tr>
<th>DNS Traffic</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>client: 1.2.3.4 AND query: whalebone.io.</td>
<td>client_ip: 1.2.3.4 AND domain: whalebone.io</td>
</tr>
</tbody>
</table>

**Tip:** Filtering operators are placed statically to the URL address. Therefore, you can create your set of filters in advance (such as view on individual IPs) and to use them when necessary. Afterwards, you can place them to your CRM for the specific user’s account and to access the filtered view immediately. It will help saving your time when customer asks for the support as you can immediately open their details.
Sooner or later every administrator will encounter a situation, when DNS resolution is not successful. Most of the time it is not connected with Whalebone’s resolver but there is an issue with an authoritative server.

ISPs often face complaints that users cannot access the domain, in many cases it is not the ISP’s fault, but Whalebone solution provides you with information so you can identify the issue. These steps needs to be done:

- **Examine domain in Threats page.** Check whether domain was block by security feature.

- **Examine domain in DNS traffic** If it was not blocked because of threats, go to DNS Traffic and check whether it reached the resolver. Often users rewrites resolver with public ones and if that resolver faces a issue ISP is blamed to as source of problem, which is not true

  **You can face three cases:**
  - domain was translated correctly
  - NXDOMAIN was returned - it means that the authoritative server responded, but the domain or sub-domain does not exist.
  - SERVFAIL - no response came from the configured authoritative server. This can mean an outage of server or link issue.

- **Examine domain in DNSVIZ** Under each domain there is an arrow where you can be redirected to DNSVIZ of a particular domain. It shows full resolution process in a human readable way. It can show that the DNSSEC validation process was unsuccessful or the authoritative DNS server was not reachable.

You can watch step-by-step video guide [here](#)

Whalebone administration portal provides ability to trace the domain. This feature is available in Resolvers under each resolver three dots. This feature shows what information is passed to resolver when resolving particular domain.

You can watch step-by-step video guide [here](#)
Chapter Fourteen

Reporting

Whalebone Portal provides the tools in order to configure various reporting options and manage the access to Whalebone API.

14.1 Reports

Reporting capabilities can be configured from the drop-down menu under a user’s account. The properties that can be customized, include the frequency that the reports are being delivered, the preferred day of the week, the language and the recipients.

Note: The default recipient is the owner of the account and the reports are delivered to their respective registered email address.

14.2 Alerts

Whalebone alerting provides live updates about key information such as resolver’s health, resolution status, hardware usage and it also informs about crucial security incidents and many more. All of these information can be passed through multiple channels e.g. email, slack, syslog or webhook. You can create new alert from predefined templates and alerts can be then customized by editing their parameters. You can watch step-by-step video guide here.

Note: In order to turn on an alert, you first need to assign a destination for it. Click the alert name to expand it in detail and select the destination from the box. Multiple destinations may be selected by shift-clicking the addresses.

14.2.1 DNS traffic - count of unique requests from IP

This alert is triggered when a single source IP reaches the limit of unique requests with defined attributes. Parameters: * MINUTES: time window in minutes (Default=15) * TRESHOLD: number of events in timeframe to trigger alert (Default=100) * QUERY_TYPE: Filter by DNS query type (Default=*) * RESPONSE_TYPE: Filter by DNS response (Default=*) * IP_WILDCARD: Include only these comma-separated IP addresses in the alert (Default=*) * IP_WILDCARD_IGNORE: Ignore these comma separated domains in the alert (Default=none) * DOMAIN_WILDCARD: Include only these comma separated domains in the alert (Default=none) * DOMAIN_WILDCARD_IGNORE: Ignore these comma separated domains in the alert (Default=none) * DGA: Filter by domain generation algorithm - Only DGA, Without DGA or both (Default=*)
14.2.2 DNS traffic - increased percentage of queries

This Alert will be sent when number of DNS traffic logs is percentually greater over configured time period. Parameters:
- **MINUTES**: Timeframe - time window (Default=15)
- **PERCENT**: Percentage increase (e.g. 200%) - difference between two intervals (Default=50)
- **QUERY_TYPE**: Filter by DNS query type (Default=*)
- **RESPONSE_TYPE**: Filter by DNS response (Default=*)

14.2.3 DNS traffic - possible homograph attack

This Alert is sent when a possible homograph attack for a specified domain is detected. Parameters:
- **DOMAIN**: Domain to monitor for possible homograph attacks (One alert can monitor only one domain)
- **DISTANCE**: Number of characters that can differ in the phishing domain (Default=1)
- **DOMAIN_WILDCARD_IGNORE**: Ignore this list of comma separated domains in the alert. In case DISTANCE is larger than 1, there will be a detection on domains that support both a global and regional top level formats. It is recommended to add the legitimate domains in the whitelists in order to avoid unnecessary alarms. (Default=none)

14.2.4 DNS traffic - threshold for unique queries

This Alert is sent when threshold for filtered unique DNS logs is reached. Parameters:
- **MINUTES**: Timeframe - timewindow (Default=15)
- **TRESHOLD**: Threshold - number of events in timeframe to trigger alert (Default=100)
- **QUERY_TYPE**: Filter by DNS query type (Default=*)
- **RESPONSE_TYPE**: Filter by DNS response (Default=*)

14.2.5 Resolver - Cloud communication failure

14.2.6 Resolver - Insufficient hardware resources

14.2.7 Resolver - Resolution service failure

14.2.8 Threats - count during intervals

14.2.9 Threats - event detection

14.2.10 Threats - newly blocked domain

**Note:** When the alerting channel is syslog, by default TCP or TLS is supported as the transport layer protocol.
Whalebone API is a practical way to access all the data that are gathered by Whalebone’s resolvers and integrate them to external systems. The API documentation can be accessed at https://apidocs.whalebone.io/public/

In order to authenticate to the API, every user needs a set of Access Key and Secret Key. These can be managed from the option API keys on the dropdown menu, under the user’s account.

You can watch step-by-step video guide here

- **API Key Generation**

The generation of the API key can be achieved by clicking the Generate new key button.

---

**Note:** Make sure to copy the Key secret as it cannot be retrieved again.

- **API Key Revocation**

In case an API key gets lost or compromised, its revocation can be achieved by the same menu.
16.1 User Management

The users can be managed under the respective tab on the User Menu.

Under this menu, an Administrator is able manage user accounts by adding, removing or disabling them. Additionally they are presented with an overview of last login and last password change details per account.

**Tip:** When a user is invited to join an organization and does not already have a Whalebone account, a new account is created for them and an activation link is being sent to their registered email address.

The two types of users that are supported are:

- **Users**: users that have their primary account registered under the specific organization.
- **External Users: (If available)** users that belong to another organization but can be assigned a role under a different Whalebone Portal tenant. e.g. resellers

**Tip:** Each user can be assigned one or more roles which can be combined to shape their final role. The permissions are additive (stackable).

Below are described the different roles and the actions that they are able to perform.
<table>
<thead>
<tr>
<th>Action</th>
<th>Read Traffic</th>
<th>Read Threats</th>
<th>List Editor</th>
<th>Security policy Admin</th>
<th>API Credentials</th>
<th>Read only</th>
<th>Operations Read Only</th>
<th>DNS Admin</th>
<th>Home-Office Security Admin</th>
<th>Users admin</th>
<th>Admin</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Threat Data</td>
<td></td>
</tr>
<tr>
<td>View DNS Traffic</td>
<td></td>
</tr>
<tr>
<td>View Whitelists/Blacklists</td>
<td></td>
</tr>
<tr>
<td>Edit Whitelists/Blacklists</td>
<td></td>
</tr>
<tr>
<td>View Security Policies</td>
<td></td>
</tr>
<tr>
<td>Edit Security Policies</td>
<td></td>
</tr>
<tr>
<td>View Resolver Configuration</td>
<td></td>
</tr>
<tr>
<td>Edit Resolver Configuration</td>
<td></td>
</tr>
<tr>
<td>View API Tokens</td>
<td></td>
</tr>
<tr>
<td>Generate API Tokens</td>
<td></td>
</tr>
<tr>
<td>View Network Configuration</td>
<td></td>
</tr>
<tr>
<td>Edit Network Configuration</td>
<td></td>
</tr>
<tr>
<td>View Alerts</td>
<td></td>
</tr>
<tr>
<td>Edit Alerts</td>
<td></td>
</tr>
<tr>
<td>View Reports</td>
<td></td>
</tr>
<tr>
<td>Edit Reports</td>
<td></td>
</tr>
<tr>
<td>HOS device management and policy settings</td>
<td></td>
</tr>
<tr>
<td>Manage user accounts</td>
<td></td>
</tr>
</tbody>
</table>

### 16.2 Organization Settings

The Organization Setting can be found under the User Menu.
16.2.1 Portal Access Policy

Portal Access Policy defines security mechanism for users accessing Whalebone’s Portal. The following settings can be configured:

- **Allowed IP Ranges**: IPv4 or IPv6 ranges in CIDR notation, e.g. 10.0.0.0/24 that are allowed to access Whalebone Portal.

- **Account Lockout**: If enabled, it can limit the number of failed login attempts. The available options are:
  - **Failed Login Limit**: Number of unsuccessful login attempts before locking the account. Default is 5.
  - **Lockout Duration**: Time duration in minutes for disallowing login requests.
  - **Lockout Reset Time**: Time duration in minutes before resetting the number of failed attempts.
  - **CAPTCHA Threshold**: Number of unsuccessful login attempts before enabling the CAPTCHA verification.

- **Multi Factor Authentication**: Require users to use a two factor authentication (2FA) application and enter additional tokens upon logging to the portal.

16.2.2 Password Policy

The following password settings can be configured:

- **Expiration Time**: Number of days before a password needs to be changed.

- **Password History**: Number of old passwords that cannot be reused when setting up a new passwords.

- **Password Attributes**: The attributes that a new password should have. The attributes that a new password can have are the following:
  - Minimum Length
  - Number of Digits
  - Number of lowercase characters
  - Number of uppercase characters
  - Number of special characters
Whalebone Home Office Security (HOS) provides an off-network DNS filtering functionality for desktop and mobile devices. It intercepts DNS traffic and inspects it before sending network packets to the wild. It protects the device from network threat by scanning every DNS packet. At the moment, Windows, Android and iOS devices are supported. For detailed OS version support, see below.

HOS comes with Windows Installer for the deployment. No user interaction is required to perform the installation, however the installer requires a token. The default target directory is: C:\Program Files (x86)\Whalebone\Home Office Security\For Android the default install location is: /storage/emulated/0/Android/io.whalebone.securedns.corp/

### 17.1 Supported OS

Windows 7 systems must be up-to-date or at least have KB3033929 installed.

Windows Server 2016 systems must have secure boot disabled.
CHAPTER EIGHTEEN

STEP BY STEP INSTALLATION

To install HOS on device you need to configure it first. Open Whalebone Portal web page and use (1) User menu to navigate to (2) Home Office Security.

A Default Device group should already exist. If not, create one by clicking the (3) + Add device group button.
• **Name**: This should clearly identify the device group to differentiate it from others. If you only use one, you may leave its name as Default Group.

• **Policy**: corresponds to the policies you create in the Configuration menu. It is a set of rules that instructs how to operate. Based on policy the device or the local/cloud resolver decides what to during DNS resolution. This set of rules persist on the device and is updated initially and later synchronized. Because of this Portal provides monitoring of these devices.

• **Blocking page**: corresponds to the blocking pages you create in the Configuration menu.

• **Domain exceptions**: HOS service will not divert any DNS queries that contain question for domain on the exception list. E.g. when `example.com` is specified, the DNS request will be resolved as usual on the resolver configured by operating system. A same rule applies for question `subdomain.example.com`.

• **Automatic upgrade**: When this configuration option is checked, HOS application on Windows will update to latest production version when a newer version is available to download. This option takes effect on Windows only, on mobile upgrades are performed by the vendor ecosystem.

**Warning**: Please note that two settings mentioned above (Automatic upgrade and Domain exception) are featured in version 2.10.0 for Windows only. If you are running earlier version, please update to 2.10.0 manually.

When you’re done, click (4) *Add* button to create this group.

HOS may become inactive when it detects that device is connected to secure network.

Click (5) *Install to group* button to see installation instructions and/or get download link to the HOS installer.
If you haven't already download the installer (6). While the installer is being downloaded please copy the installation command to clipboard (7). To install or Update:

```
```

Uninstall:

```
```
Find the folder where the installer is located. It should be file named `Whalebone.Home.Office.Security.Installer.msi`.

Open up a command prompt, change directory to the folder where is the installer and paste (8) the command with your mouse (right click). Execute the command. This requires admin privileges.

Installer will end prematurely with error when executed without token argument.
Tip: The installer has very minimal UI. If there was no error message, consider the installation successful.

Device is now visible in the Whalebone Portal web page.
19.1 Devices

Your organization may divide devices into single or multiple groups. Every device may belong exactly to a single group only. Each must be a member of Device group before they get monitored. Each group provides a security Policy which is later conditionally applied to them. Whether the device is present on the internal or external network makes it active or inactive.

It separates the network location into internal or external and the biggest role here has the Internal domain setting which must be defined in the Device group. If HOS detects the Internal domain the network location is decided as internal. Detection is performed by running DNS query for the configured internal domain and receiving the configured answer.

19.2 States

HOS is constantly monitoring changes on the network interfaces and based on the conditions it changes its states.

**Active** All DNS traffic is diverted to DoH server. HOS becomes Active when it is connected to the public network, but the Internal domain is unreachable. This state is used for the danger zones such as public wifi.

**Inactive** DNS traffic is left intact. This state is used when device can’t connect to the Internet or when it is connected through internal network.

19.3 Security

In the background HOS uses DNS-over-HTTPs or DoH. The Hostname of the Resolver is never diverted and is cached. The identification and authenticity is left to the TLS protocol. When device belongs to any Domain, then all domain names and their subdomains are allowed to reach the DNS servers they route to. HOS uses Win32_NetworkAdapterConfiguration WMI table to get the information.
19.4 Service requirements

19.4.1 Windows

Because HOS must intercept network traffic it requires to run as SYSTEM account. You can query the service by name hos to see if it started properly. When none or invalid installation token is supplied the service it will stop.

```
C:\Users\admin>sc query "Whalebone Home Office Security"
```

<table>
<thead>
<tr>
<th>SERVICE_NAME: HOS</th>
<th>TYPE</th>
<th>STATE</th>
<th>WIN32_EXIT_CODE</th>
<th>SERVICE_EXIT_CODE</th>
<th>CHECKPOINT</th>
<th>WAIT_HINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>4</td>
<td>0 (0x0)</td>
<td>0 (0x0)</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(STOPPABLE, PAUSABLE, ACCEPTS_SHUTDOWN)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On first run HOS also installs windivert system driver. score*

```
C:\Users\admin>sc query windivert type=kernel
```

<table>
<thead>
<tr>
<th>SERVICE_NAME: windivert</th>
<th>TYPE</th>
<th>STATE</th>
<th>WIN32_EXIT_CODE</th>
<th>SERVICE_EXIT_CODE</th>
<th>CHECKPOINT</th>
<th>WAIT_HINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>0 (0x0)</td>
<td>0 (0x0)</td>
<td>0x0</td>
<td>0x0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(STOPPABLE, NOT_PAUSABLE, IGNORES_SHUTDOWN)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Service is configured to recover after crash three times and then stay stopped.

19.4.2 Android

The Android app has access to:

- Location
  - precise location (GPS and network-based)

- Camera
  - take pictures and videos (to scan QR code of the Device group from the portal)

- Wi-Fi connection information
  - view Wi-Fi connections

- Other
  - view network connections
  - connect and disconnect from Wi-Fi
  - full network access (to create a VPN tunnel to Whalebone Cloud resolvers)
  - run at startup
19.5 Application Firewall Settings

Enable TCP port 443 for the Whalebone Home Office Security.exe in the application firewall. To enable it for all network profiles in Windows, adjust following command to let HOS connect to your DoH server (e.g. 185.150.10.71):

If HOS service does not work please ensure that HOS service can connect to hos.whalebone.io and mobileapi.whalebone.io.

```
netsh advfirewall firewall add rule name="Whalebone Home Office Security" dir=out
action=allow program="C:\Program Files (x86)\Whalebone\Home Office Security\Whalebone.exe" enable=yes remoteip=185.150.10.71,LocalSubnet
```

It is not necessary for the service to listen on port 53, thus there is no requirement for the application firewall to follow. Additionally, service is listening on TCP endpoint localhost:9000 to provide data endpoint for UI app, and UI app server whosui.exe listens on TCP endpoint localhost:55221 to render graphical components. Even though these ports are not critical for HOS operation they are relevant for UI app AdminUI.exe. Please ensure that services are allowed to listen on those local ports as this allows user to have insight into app operation.

19.6 Application Logs

Service logs can be found at c:\ProgramData\Whalebone\Home Office Security\Logs\, which contain detailed information about application states and operation. In case you encounter unexpected service behaviour please include this Log folder and/or Config folder along inside your support ticket. Application provides additional information for operation trace, in AdminUI.exe app, Events tab may give you better insight in HOS operation.
20.1 On-premise resolver deployment

Unlike other similar services, Whalebone can be deployed as a full-fledged local DNS resolver. This is the type of deployment we encourage. The installation is fairly simple. All you need is access to Whalebone Portal and a virtual or physical server, which is rather undemanding in terms of hardware. First, let’s take a look at system requirements. Whalebone supports the latest versions of the most popular Linux distributions Debian, Ubuntu, CentOS, and Red Hat Enterprise Linux. The minimum hardware sizing is 2 CPU cores, 4 GB RAM, and a 40 GB HDD. Such a machine can handle up to 20,000 users.

Before setting up your server, make sure you don’t fall short of the network requirements and prevent the machine from being reachable from outside your network. Once the server is ready, go to the Whalebone Portal and create a new resolver. Come up with a fitting name, which can be changed later on. Once you initiate the addition of the new resolver, you’ll see the installation script one-liner command. Copy it to the clipboard. At this point, access the terminal of the server created for this resolver. All that’s left to do is to run the installation script previously copied to the clipboard. The installation shouldn’t take more than a couple of minutes. The script will inform you about the progress. If the installation wasn’t successful, send us the installation log and we’ll look into it. Before long, the status of the resolver changes. As soon as the resolver becomes Active, you can route the traffic to it and start protecting your network.

20.2 Cloud resolvers

Whalebone also offers cloud resolvers with malware protection and content blocking. Their addresses are to be found in the Whalebone Portal in the Cloud resolver tab. You can use them directly as primary or secondary resolvers or as a backup to your existing local resolver. It’s not rocket science to use them.

First of all, type in your public IP ranges you want to direct to the cloud resolvers. Afterward, all you need to do is set the Whalebone cloud resolver address as the DNS server address in your network. As with the local resolvers, you can create different policies and assign them to individual IP addresses or ranges. This allows you to offer Whalebone to institutions such as schools, which don’t necessarily get their connectivity from you, but you administer their network. After having saved and directed the traffic, you’re good to go. Just wait for the changes to be propagated to your clients.
21.1 Basic configuration

Every network has its own specific needs. Whalebone can and will adapt to every single one of them. One of the key components that need to be configured when implementing Whalebone is setting up your “Security Policies.” This part of the configuration allows you to adjust the default settings. You can for example lower the blocking threshold or deactivate blocking entirely which leaves you with the audit mode. In this mode, Whalebone monitors the incidents without preventing them from happening. The core of the configuration of audit and blocking is a so-called “score”, which is assigned to individual domains by our algorithm. The higher the score, the more dangerous the domain. It’s up to you to choose from the preset levels of sensitivity or decide to adjust the threshold manually. We advise ISP networks to “block carefully”. The lower the threshold, the more sensitive the blocking. Keep in mind, though, that setting a low threshold increases the risk of false positives.

You can also choose different types of threats to be blocked. If needed, you can easily create your own blocking lists or define domains that should always be accessible. Our customers love that Whalebone can meet the legal blocking requirements of their government for them. If you don’t find your country our list, let us know and we’ll make sure it gets there. If you activated the content filtering add-on, you can configure it here as well. Create as many unique security policies as you want. Afterward, you can go into the configuration of a given resolver and assign these policies to different IP addresses or ranges. All you need to do is to go to the “Policy Assignment” section in the resolver details and assign a policy to a particular IP address or range. Make sure to save the settings.

21.2 Security policies

One of the key components that need to be configured when implementing Whalebone is setting up your “Security Policies. This part of the configuration allows you to adjust the default settings. You can for example lower the blocking threshold or deactivate blocking entirely which leaves you with the audit mode. In this mode, Whalebone monitors the incidents without preventing them from happening. The core of the configuration of audit and blocking is a so-called “score” which is assigned to individual domains by our algorithm. The higher the score, the more dangerous the domain. It’s up to you to choose from the preset levels of sensitivity or decide to adjust the threshold manually.

We advise ISP networks to “block carefully” The lower the threshold, the more sensitive the blocking. Keep in mind, though, that setting a low threshold increases the risk of false positives. You can also choose different types of threats to be blocked.
If needed, you can easily create your own blocking list or define domains that should always be accessible. Our customers love that Whalebone can meet the legal blocking requirement of their government for them. If you don’t find your country on our list, let us know and we’ll make sure it gets there.

If you activated the content filtering add-on, you can configure it here as well. Create as many unique security policies as you want. Afterward, you can go into the configuration of a given resolve and assign these policies to different IP addresses or ranges. All you need to do is to go to the “Policy Assignment” section in the resolver detail and assign a policy to a particular IP address or range. Make sure to save the settings.

### 21.3 Blocking page configuration

With Whalebone, you can fully customize blocking pages, which appear in cases someone attempts to access a dangerous website in their browser. This tool needs a local resolver, where you can switch the blocking page from cloud to on-premise. In order to configure blocking pages, go to “Configuration” and then “Blocking pages”. You can adjust the existing ones or create a brand-new one. When creating a new blocking page, you can define its name, the domain, and the language of the page. Afterward, fill in all the necessary data including the name of the company, its logo and contact information. Naturally, you can change the information later on. If you want to do so, use the magic stick or edit directly in the HTML code. You can modify the design as well as the content of the blocking page as you choose. All you need to do is to preserve the necessary variables shown over the blocking field.

Once you have saved the modified blocking page, go to “Resolvers” and select the resolver to which you would like to apply the blocking page. Go to “Policy assignment” and apply the blocking page to a given resolver. Alternatively, you can assign it to a specific IP address or range. While you’re at it, you can also activate a “bypass”, which will allow the user to access the blocked domain nonetheless.

### 21.4 Alerts

Set up Whalebone alerts and get live updates about what’s going on with your resolvers, how secure your network is, and how well your DNS resolution works. The basic setup is simple: just choose what type of information you want to get and how often you want to be alerted. You can get alerts via E-mail or Slack. You can also integrate Whalebone alerts into your systems through webhooks or syslog. For the status of the resolver, resolution, and server it runs on. We would argue that everyone should at least create alerts.

Make sure to start by setting up alerts for resolution failures. Afterward, set up alerts for hardware resources failure, such as insufficiencies concerning the HDD, RAM, or CPU capacity. You can also monitor failures in communication between the resolver and the Whalebone cloud when the resolution works just fine, but the resolver isn’t in sync with Whalebone data centers.

You can even create advanced alerts for DNS traffic and security incidents. We will gladly give you a hand with setting advanced alerts, no matter if it’s during the introductory technical consultation, at the end of the trial or any time you decide to contact Whalebone support.
22.1 Domain analysis

There are two ways to manually perform an analysis of a domain against the Whalebone database. One way to open the “Domain Analysis” tool is from the user’s menu. The other option is to check a specific domain from the context menu in “Threats” or “DNS traffic” overviews directly. Afterward, you will see all the information that Whalebone has collected about the domain. We used kidos-bank.ru as an example. We can see that there are different types of threats associated with the domain. Its score is 95-100 and it was labeled as dangerous in November 2019. In the following graphs, you can see the development of the detections, or rather the DNS resolution requests of the domain in your network. The outcome of the analysis also shows that the domain is not assigned a content category and its blocking wasn’t ordered by law. You can inquire into any domain like that. Just enter it into the top field. We can see that facebook.com is not considered a security threat, there’s quite some traffic going on and Whalebone categorizes it as a social network. If we type in porn.com, we can see that the category has changed into “Sexual content”.

22.2 DNS traffic

You can see the timeline of the DNS requests and answers of the last 14 days in the “DNS traffic” log. The log shows the first resolution of the domain by a given IP address in the last 24 hours, the type of query, the outcome of the resolution, the source and destination IP address. It also enables you to do a full-text filtration using wild card operators.

The summarizing logarithmic graphs under the main timeline display an overview of the most common answers, second-level domains, and IP addresses with the heaviest traffic. All the data is accessible in a table format, too, and you can even export them to a CSV file with a maximum of 1,000,000 lines. The DNS traffic logs are temporarily stored on the resolver’s server. You can access them from there for your own processing. One of the biggest advantages of the DNS traffic log is the possibility of filtering errors in responses such as NXDOMAIN and SERVFAIL. This allows you to see the malicious traffic on devices connected to the network. This video shows a hashed IP address with almost 240,000 resolutions of different domains leading to NXDOMAIN and SERVFAIL errors. Here, you can see both public and private IP addresses.

This display is particularly useful especially if you add other queries to the filter, such as MX. Such as setting of the filter shows you IP addresses in your network, which send spam and are therefore in danger of being blacklisted and consequently endangering other customers as well, in case they’re behind NAT. Similarly, you can choose for example A queries. We specialize in the detection of DGA malware communication. Clients, who are infected in this way, connect to quasi-randomly generated domains that try to communicate with the command center of the malware.
22.3 Threats

Whalebone is all about protecting your network. That’s why you can access a complete overview of incidents that have happened in the last three months. Not only does the overview offer information, but it also provides you with the possibility of filtration and data analysis. The results are divided into three categories; events that have been blocked, audited, and allowed. The audited domains represent domains, which are somewhat suspicious. Their score is high enough to be listed in the log but lower that the blocking threshold. When it comes to blocked domains, the resolver returns a fully-customized blocking page with an optional bypass button.

You can also filter the data by the type of incident. Let’s take a look at the example of communication with the command center of the malware. We can see specific blocked domains as well as local or public IPs that tried to access them. This is an example of active intensive traffic from a specific IP address and communication with malware called Necurs. Such an infected client would affect the quality of other client’s connections as well. For every single record, you can choose different types of domain checks in the context menu. It’s very practical to start the analysis by googling the domain. More often than not, though, the results will only tell you that the domain is dangerous.

Another way of checking the domain is by using various security sources. An example of such a service is a very useful website Virustotal. If you aren’t convinced that there was a good reason for the blocking even after the analysis, feel free to report such a domain to us. We will examine the case and get back to you. In case it truly turns out to be a false positive blocking, we will globally allow access to the domain for all Whalebone customers.

22.4 Data Analysis

The Whalebone Portal allows detail full-text filtration and associated data analysis. The thorough manual is to be found in the technical documentation available at docs.whalebone.io. You will find a list of different operators, examples of their usage, and references to the potential difference between the DNS traffic and threats overview. You can use wildcard or logical operators. When using full-text filtration, all the parameters are to be type directly into the URL address. This way, you can easily create filters for future use.
22.5 API

With Whalebone API, you can integrate Whalebone into your own systems. This allows you to make use of all the advantages of Whalebone. First of all, you need to create a new key. Go to the API keys configuration from the context menu. After a new API key is created, you will see all the necessary details. The secret for the API key will never be displayed again, so make sure you really copied it. You can always invalidate the API key. Just click the corresponding icon. We have a detailed interactive documentation for Whalebone API. Just click the icon in the API keys overview or go directly to apidocs.whalebone.io/public. The documentation will take you through different categories of information and settings with specific examples. The “Event” section contains all the information about threats such as types of threats and domains. You can even model API calls directly in the documentation and use them right away. On top of that, the API contains certain information that isn’t available in the Whalebone Portal yet, such as the DNSSEC validation details. Naturally, you can access information about resolvers, such as latency, the health of the resolvers, or the usage of system resources. Before you start modeling API calls in the documentation, we recommend authorizing it with your API keys. This will allow you to directly work with your account in the documentation.

22.6 Domain resolution troubleshooting

When internet users can’t access a domain, they often think it’s the ISP’s fault. More often than not, you’re not the one to blame, it’s the domain itself. No matter what, you still have to answer the customer and explain the situation. Let’s take a look at how Whalebone improve this process.

First of all, examine the potential domain blocking by searching the domain in “Threats”. We recommend using search operators and querying for subdomains. It turns out that the domain “sufr.cz” has not been blocked as a threat. The second step is to go to “DNS traffic” and check if the domain was even accessed by anyone. If so, take a look at how Whalebone deal with the resolution. It turns out there have been attempts to access the domain. In that case, we have to check the results. We can see that the response for this domain was SERVFAIL. To further the troubleshooting process, we can analyze the domain through the context menu.

We recommend using the DNS Viz tool. DNS Viz is designed to fully inspect the DNS resolution behavior. A direct click-through leads to the DNSSEC validation results. It turns out that the problem of this particular domain is that it has issues with expired cryptographic signatures. If you feel like you still don’t really know what’s going on with the domain, feel free to contact us via E-mail at support@whalebone.io. We will gladly look into your issue.
22.7 Domain Tracing

A well-working DNS resolution is essential for a functional internet connection. That’s why you can make sure that the individual resolvers are functioning all right in the administration portal. All you need to do is choose the corresponding local resolver, open the context menu and click “Trace domain”. At this point, type in the domain you want to examine. Let’s say it’s whalebone.io.

Choose one of the query types, for example, “A” and trace the domain. You can see the outcome of the resolution here. The upper part shows the result of the query. The green color tells you there’s nothing wrong with the DNS resolution. If there’s an issue, there will be some information about the particular problem in orange or red. For example, if the domain doesn’t exist, the result will be NXDOMAIN. In case there’s an issue with the resolution, you will see the “SERVFAIL” response. If you encounter any issues, send the log to support@whalebone.io and we’ll look into it.
The Whalebone resolver utilizes the following technology in its solution:

### 23.1 the CRC64 variant with Jones coefficient

Copyright (c) 2012, Salvatore Sanfilippo <antirez at gmail dot com>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of Redis nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23.2 the Lightning.NET Library

The OpenLDAP Public License
Version 2.8, 17 August 2003

Redistribution and use of this software and associated documentation
("Software"), with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions in source form must retain copyright statements
and notices,

2. Redistributions in binary form must reproduce applicable copyright
statements and notices, this list of conditions, and the following
disclaimer in the documentation and/or other materials provided
with the distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time.
Each revision is distinguished by a version number. You may use
this Software under terms of this license revision or under the
terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS
CONTRIBUTORS "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE AUTHOR(S)
OR OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in
advertising or otherwise to promote the sale, use or other dealing
in this Software without specific, written prior permission. Title
to copyright in this Software shall at all times remain with copyright
holders.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Copyright 1999-2003 The OpenLDAP Foundation, Redwood City,
California, USA. All Rights Reserved. Permission to copy and
distribute verbatim copies of this document is granted.
24.1 Steady

24.1.1 2021.07.21

**Bugfixes** * Fixed Knot resolver version to 5.2.1 (fixed occasional slow resolution issue and issues with particular domains)

24.2 Latest

24.2.1 2022.05.04

**New features**

- Completely reworked DNS logging (passivedns service is replaced by dnstag service)
- Ability to log even encrypted traffic (DNS over HTTPS / TLS)
- New DNS query types supported
- Under heavy load does not overload single CPU core but distributes the load evenly
- New network and disk operations metrics will be available from the portal
- Based on up-to-date Knot Resolver version (5.5.0)

**Bugfixes**

- Fixed memory leak causing occasional swap issues on some of the resolvers
- Higher precision of reporting of the available memory on the resolver machine
- Fixed minor issues during update process in the agent (will be put to work after the update is finished)
- Set memory limit for real-time Threat Intelligence updates as we have observed occasional overconsumption
- Adjusted DNSSEC log gathering format to comply with changes in Knot Resolver
24.2.2 2021.12.14

**Bugfixes** * fixed issue with QName minization affecting resolution of `console.aws.amazon.com` subdomains * small fixes on real time threat intelligence updates

24.2.3 2020.10.12

**Important! Before upgrade, make sure that the service systemd-resolved is running (in case it is installed):**

```
sudo systemctl enable systemd-resolved
sudo systemctl start systemd-resolved
```

**Changes** - Software update source for Whalebone resolver is now [https://harbor.whalebone.io](https://harbor.whalebone.io) (please check your firewall rules) - Based on DNS Flag Day 2020 recommendation that EDNS buffer size is adjusted to 1232 bytes

**New features** - Blocking page is reworked from the scratch (originally referred to as “Sinkhole”)

- You can find the configuration in Configuration -> Blocking pages and the activation can be done in the resolver details in Policy assignment
- It is hosted directly on the resolver (ports TCP/80,443 has to be reachable from clients)
- Full access to html code editor
- Feature “Continue anyway” - user can decide to continue to the destination malicious website on his own
- Different blocking pages per IP or subnet - could be used to customize the blocking page for a specific customer (school, government office, etc.)
- Definition of supported languages and a default language (for browsers that do not tell which language they prefer if any)
- Knot resolver updated to version 5.1.3 (from version 5.1.1)
- Management Agent for cloud communication is now independently monitored and if there are any issues, it is automatically restarted (no impact on DNS resolution)

24.2.4 2021.08.10

**New features** - Knot Resolver update from version 5.2.1 to version 5.3.2

- Various new features and fixed issues
- One of the most significant changes is an improved algorithm of nameserver selection for recursive resolution. The updated algorithm ensures a faster and more reliable process.
- Real-time threat intelligence synchronization - Whenever Whalebone finds a new threat, the resolver immediately receives the information and starts behaving accordingly. - For this purpose, the resolver stays connected to the service stream.whalebone.io on the TCP/433 port.
- Blocking of a new type of DNS requests (Type 65/HTTPS) - At this point, this type of request is most commonly used by Apple devices accessing services hosted on Cloudflare.
- New categories of content filtering - P2P - DoH (DNS over HTTPS) - Child abuse
- New categories of legal blocking requirements in different countries - United Kingdom - Serbia - Philippines

**Fixed issues** - Improvements in specific scenarios for threat evaluation of specific subdomains, which are included in content categories and at the same time under legal requirements of countries - Optimization of memory usage of the service which manages the threat database and the local blocking page